
Chapter 4

Writing Your First Application
In This Chapter

▶ Working with the Integrated DeveLopment Environment (IDLE)

▶ Getting started with IDLE

▶ Writing the first application

▶ Seeing how the first application works

▶ Formatting your application code

▶ Using comments effectively

▶ Working with existing applications

▶ Ending your IDLE session

M

any people view application development as some sort of magic prac-
ticed by wizards called geeks who wave their keyboard to produce

software both great and small. However, the truth is a lot more mundane.

Application development follows a number of processes. It’s more than a
strict procedure, but is most definitely not magic of any sort. As Arthur C.
Clark once noted, “Any sufficiently advanced technology is indistinguishable
from magic.” This chapter is all about removing the magic from the picture
and introducing you to the technology. By the time you’re finished with this
chapter, you too will be able to develop a simple application (and you won’t
use magic to do it).

As with any other task, people use tools to write applications. In the case of
Python, you don’t have to use a tool, but using a tool makes the task so much
easier that you really will want to use one. In this chapter, you use a tool that
comes with Python, the Integrated DeveLopment Environment (IDLE). In the
previous chapter, you use the command-line tool to play around with Python
a little. However, IDLE goes further than the command line tool and makes it
possible to write applications with greater ease.

58 Part I: Getting Started with Python

 A vast number of other tools are available for you to use when writing Python
applications. This book doesn’t tell you much about them because IDLE per-
forms every task needed and it comes with Python. However, as your skills
increase, you might find that tools such as Komodo Edit (http://www.
activestate.com/komodo-edit/downloads) are easier to work with
than IDLE. You can find a great list of these tools at https://wiki.python.
org/moin/IntegratedDevelopmentEnvironments.

Understanding the Integrated
DeveLopment Environment (IDLE)

You can literally create any Python application you want using just a text
editor. As long as the editor outputs pure text rather than formatted text as
a word processor does, you can use it to write Python code. However, using
a text editor isn’t efficient or straightforward. To make the development pro-
cess easier, developers have written Interactive Development Environments
(IDEs). The IDE that comes with Python is IDLE. However, many other IDEs
are capable of working with Python.

 The feature set provided by IDEs varies. In fact, that’s why there are so many
of them on the market. IDLE provides a basic feature set that is shared by
most IDEs out there. It provides the functionality required to

 ✓ Write Python code.

 ✓ Recognize and highlight keywords and certain types of special text.

 ✓ Perform both simple editing (such as cut, copy, and paste) and code-
specific editing (such as showing the parentheses that surround an
expression).

 ✓ Save and open Python files.

 ✓ Browse the Python path to make locating files easy.

 ✓ Browse and locate Python classes.

 ✓ Perform simple debugging tasks (removing errors from the code).

IDLE differs from the command-line version of Python in that you get a full-
fledged GUI and you can accomplish many tasks much more easily through
IDLE than through the command line. In addition, the command line doesn’t
really offer all the same features as IDLE. Yes, you can debug your application
using the command line, but it’s a difficult, error-prone process. Using IDLE is
a whole lot easier.

59 Chapter 4: Writing Your First Application

Starting IDLE
You find IDLE in the Python 3.3 folder on your system as IDLE (Python GUI).
When you click or double-click this entry (depending on your platform), you
see the IDLE editor shown in Figure 4-1. The two lines of text contain informa-
tion about the Python host and provide suggestions on the commands you
can try. The precise information you see differs by platform. Your screen-
shots may differ from mine depending on the version of Python you use, the
platform you use, how you have IDLE configured, and how you have your
system configured.

Figure 4-1:

IDLE pro-

vides you

with a GUI

editing

experience

for your

application

code.

60 Part I: Getting Started with Python

Using standard commands
IDLE provides all the same commands as the command-line version of
Python. It doesn’t list them all because the assumption is that you’ll use
the GUI features of IDLE to make things easy. However, if you want, you can
type help() and press Enter to enter help mode, even though this com-
mand isn’t listed as one of the initial commands for IDLE as it is for the
command-line version. Figure 4-2 shows the results.

Figure 4-2:

You can

access all

the same

commands

in IDLE that

you can with

the com-

mand line

version.

61 Chapter 4: Writing Your First Application

Understanding color coding
The book doesn’t show the color coding that you see when you type help(),
but you can see it in the editor. Color coding lets you see commands with
greater ease and differentiate commands from other sorts of text. Press Enter
to get out of help mode. As with the command-line version, you see descrip-
tive text each time you perform an action.

Now, type print('This is some text.') and press Enter. You see the expected
output, just as you normally would (see Figure 4-3). Notice the color coding,
though. The print() command is in purple text to show that it’s a com-
mand. The text within the print() command is green to show that it’s data
and not a command. The output is shown in blue. The color coding makes
things a lot easier, which is just one of many reasons that using IDLE is easier
than using the command line.

Figure 4-3:

With color

coding, you

can easily

determine

the use for

each kind

of text in an

application.

62 Part I: Getting Started with Python

Getting GUI help
IDLE makes obtaining the help you need easy. Look at the Help menu and you
see three entries for obtaining help:

 ✓ About IDLE: Provides you with the latest information about IDLE.

 ✓ IDLE Help: Shows you a text file containing information about working
with the IDLE IDE. For example, this is where you find a list of the IDLE
commands.

 ✓ Python Docs: Contains information required to work with Python com-
mands and other elements.

Choose Help➪About IDLE to see the About IDLE dialog box shown in Figure 4-4.
Near the middle of the dialog box, you see URLs for obtaining additional help.
Each of the buttons displays a text file containing useful information, especially
in the README and NEWS files. Click Close to exit this dialog box.

Figure 4-4:

The About

IDLE dialog

box contains

useful infor-

mation that

you might

not see

otherwise.

Precisely what you see when you choose Help➪Python Docs depends on the
platform you use. Figure 4-5 shows the Windows version of the dialog box.
The Python Docs file contains information about how to work with and use
Python to create applications. It even has a tutorial section in which you can
find additional helpful tips after working your way through this book.

63 Chapter 4: Writing Your First Application

Figure 4-5:

Use Python

Docs to dis-

cover more

about using

Python

to create

applications.

Configuring IDLE
IDLE is basically a fancy text editor, when you think about it, so it’s not sur-
prising that you can configure it to perform the task of editing text better.
Choose Options➪Configure IDLE to see the IDLE Preferences dialog box
shown in Figure 4-6. This is where you can choose things like what font IDLE
uses when displaying text. In the figure, you see the Font/Tabs tab, which lets
you choose the size and style font used for text, along with the number of
spaces used for indentation (see the “Understanding the Use of Indentation”
section of this chapter for details).

As previously mentioned, IDLE uses color coding to make reading and under-
standing the code easier. This tab lets you choose the colors used to perform
highlighting, as shown in Figure 4-7. Notice that you can save your selections
as a theme. You can create different themes for different needs. For example,
you may use one theme when you use your laptop or other computing device
in bright conditions and another theme in low light conditions.

64 Part I: Getting Started with Python

Figure 4-6:

Configure

IDLE to

meet your

particular

require-

ments.

Figure 4-7:

Change the

highlighting

used for text

so that you

can see it

better.

65 Chapter 4: Writing Your First Application

Even though you won’t see shortcut keys used very often in this book due
to platform differences, IDLE does support them. The shortcut keys on your
platform may differ from those shown in Figure 4-8. IDLE comes with built-
in key sets for Windows, Mac, OS X, and Unix. You can choose any of these
themes by clicking the small button next to the IDLE Classic Windows entry
(see Figure 4-8). You can also create your own custom theme that’s based on
another application you use.

Figure 4-8:

Use shortcut

keys that

make the

most sense

to you as a

developer.

The General tab, shown in Figure 4-9, controls how IDLE works. For example,
you can tell IDLE to open a Python Shell window (so that you can experi-
ment) or an Edit window (so that you can write an application). The default
is to open a Python Shell window so that you can experiment with Python
and try new techniques. You can also control whether IDLE prompts you to
save files before running applications (always a good idea in case the applica-
tion causes the system to freeze) and the size of the initial window when you
create one. Paragraph formatting keeps your text from becoming too long to
comfortably see in the window. The defaults you see normally work just fine,
so there really isn’t a good reason to change them.

66 Part I: Getting Started with Python

Figure 4-9:

The General

tab controls

the func-

tioning of

the IDLE

application.

The Additional Help Sources feature lets you create new help sources for IDLE
to use. For example, you can create a link to an online source, such as Python’s
online documentation at https://docs.python.org/release/3.3.4/. To
add a new source, click Add. You see the New Help Source dialog box, shown in
Figure 4-10, where you can add the text that appears on the Help menu for this
information source and the location of that source on a hard drive or online.
When you finish adding the source, click OK and you’ll see it added to the IDLE
Help menu. There are also buttons on the General tab of the IDLE Preferences
dialog box for editing and removing help sources.

Figure 4-10:

Create

new help

sources as

needed to

make your

develop-

ment experi-

ence easier.

67 Chapter 4: Writing Your First Application

Creating the Application
It’s time to create your first Python application. Your initial Python Shell
window won’t work for creating an application, so you can begin by creating
a new Edit window for the application. You’ll type the required commands
and then save the file to disk.

Opening a new window
The initial Python Shell window is just fine for experimentation, but you need
a nice, clean Edit window for typing your first application. The Python Shell
window is interactive, which means that it gives you immediate feedback for
any commands you type. The Edit window provides a static environment,
where you type commands, save them, and then run them after you type
enough commands to create an application. The two windows serve dis-
tinctly different purposes.

 Choose File➪New File to create a new window. A new window like the one
shown in Figure 4-11 opens. Notice that the title bar says Python 3.3.4 Untitled
instead of Python 3.3.4 Shell. A Python Shell window will always have the
word “Shell” in the title bar. The two windows also have some unique toolbar
entries. For example, an Edit window includes the Run command, which you
use later to test your application.

Figure 4-11:

Use the Edit

window

to create

applications.

Working with the Edit window is just like working with any other text editor.
You have access to basic editing commands such as Copy, Cut, and Paste.
Pressing Enter moves to the next line rather than executing a command as
it would when working in the Python Shell window. That’s because the Edit
window is a static environment — one where you type commands and save
them for later reuse.

68 Part I: Getting Started with Python

The Edit window also provides special commands to format the text. The
“Understanding the Use of Indentation” and “Adding Comments” sections of
this chapter describe how to use the formatting features. What you need to
know now is that these formatting commands act differently from those in a
standard text editor because they help you control the appearance of code
rather than of generic text. Many of the formatting features work automati-
cally, so you don’t need to worry about them now.

Finally, the Edit window provides access to commands that tell Python to
perform the steps in the procedure you create one at a time. This process is
called running the application. The “Running the Application” section of this
chapter describes this process in greater detail.

Typing the command
As with the Python Shell window, you can simply type a command into the
Edit window. To see how this works, type print(. Notice that the Edit window
provides you with helpful information about the print() command, as
shown in Figure 4-12. The information is a little terse, so you may not under-
stand it now. As the book progresses, you learn more about the print()
command and the help provided by the Edit window will make more sense.
For now, the word value is the one that you need to focus on. The print()
command needs a value before it can print anything and you’ll encounter a
host of different values as the book progresses.

Figure 4-12:

The Edit

window pro-

vides helpful

information

about the

commands

you type.

69 Chapter 4: Writing Your First Application

Finish the command by typing “This is a simple Python application.”)
and pressing Enter. Your application should look like the one shown in
Figure 4-13. This is one of the simplest applications you can create using
Python.

Figure 4-13:

A complete

application

can be quite

short.

Saving the file
You could run the application now if you wanted to. However, saving your
application before you run it is always a good idea. That way, if you make a
mistake that causes Python or the system to freeze for some reason, your
application code is still safe. Saving the application makes it easier to go back
later to determine what went wrong, make corrections, and try running the
application again.

Choose File➪Save to display the Save As dialog box, shown in Figure 4-14.
The Edit window automatically chooses the Python33 folder to save the
application in. However, this is where the Python code resides, and saving
your application code in the same folder is a bad idea.

The example code for this book is contained in a folder named BP4D
(Beginning Python For Dummies). The code for this chapter is found in
the \BP4D\Chapter04 subfolder of the downloadable source (see the
Introduction for the location of the source code online). If you want, create
a directory structure with similar names using a technique that works for
your platform as you follow along in the book. You can also open the down-
loadable source code file for the book and avoid typing the example code.

70 Part I: Getting Started with Python

Type FirstApp.py in the Filename field of the Save As dialog box and click
Save. Your application code is now saved on disk and you can access it
anytime you want.

Figure 4-14:

The Save As

dialog box

provides the

means for

saving your

application.

When you return to the Edit window, the title bar text changes, as shown in
Figure 4-15. Notice that the title bar includes the full path to the application.

Figure 4-15:

An applica-

tion on disk

displays its

name and

path in the

title bar.

71 Chapter 4: Writing Your First Application

Running the Application
Applications aren’t much good if you can’t run them. Python provides a
variety of methods for running any application you create. This section
explores the easiest method for running an application after you create
it. You see additional methods in the “Loading and Running Existing
Applications” section of the chapter. The important thing to remember is
that Python provides an extremely flexible environment, so if one method
of performing a task doesn’t quite work, another method will almost cer-
tainly succeed.

To run this first application, choose Run➪Run Module. You see a new copy
of the Python Shell window opens and then the output of your application
appears, as shown in Figure 4-16.

Figure 4-16:

The output

of the

example

application

appears in a

Python Shell

window.

The top two lines of the output in Figure 4-16 should be familiar by now —
they’re the information that always appears when you start the shell. Next
comes a

================================ RESTART ================================

message. You see this message every time you run the application. To see
this for yourself, select the Edit window and choose Run➪Run Module. The
original Python Shell window is selected, another message appears, and you
see the output from your application again, as shown in Figure 4-17.

72 Part I: Getting Started with Python

Figure 4-17:

The Python

Shell

window

displays

a Restart

message

each time

you run the

application.

Understanding the Use of Indentation
As you work through the examples in this book, you see that certain lines
are indented. In fact, the examples also provide a fair amount of white space
(such as extra lines between lines of code). Python ignores any indentation
in your application. The main reason to add indentation is to provide visual
cues about your code. In the same way that indentation is used for book
outlines, indentation in code shows the relationships between various code
elements.

The various uses of indentation will become more familiar as you work your
way through the examples in the book. However, it’s important to know at
the outset why indentation is used and how it gets put in place. So, it’s time
for another example. The following steps help you create a new example that
uses indentation to make the relationship between application elements a lot
more apparent and easier to figure out later.

 1. Choose File➪New File.

 IDLE creates a new Edit window for you.

 2. Type print(“This is a really long line of text that will ” +.

 You see the text displayed normally onscreen, just as you expect. The
plus sign (+) tells Python that there is additional text to display. Adding
text from multiple lines together into a single long piece of text is called
concatenation. You learn more about using this feature later in the book,
so you don’t need to worry about it now.

 3. Press Enter.

 The insertion point doesn’t go back to the beginning of the line, as you
might expect. Instead, it ends up directly under the first double quote,

73 Chapter 4: Writing Your First Application

as shown in Figure 4-18. This feature is called automatic indention and
it’s one of the features that differentiates a regular text editor from one
designed to write code.

 4. Type “appear on multiple lines in the source code file.”) and press Enter.

 Notice that the insertion point goes back to the beginning of the line.
When IDLE senses that you have reached the end of the code, it auto-
matically outdents the text to its original position.

 5. Choose File➪Save.

 You see the Save As dialog box.

 6. Type LongLine.py in the File Name field and click Save to save it.

 7. Choose Run➪Run Module.

 A new Python Shell window opens with the text displayed. Even though
the text appears on multiple lines in the source code file, it appears on
just one line in the output, as shown in Figure 4-19.

Figure 4-18:

The Edit

window

automati-

cally indents

some types

of text.

Figure 4-19:

Use concat-

enation to

make mul-

tiple lines of

text appear

on a single

line in the

output.

74 Part I: Getting Started with Python

Adding Comments
People create notes for themselves all the time. When you need to buy gro-
ceries, you look through your cabinets, determine what you need, and write
it down on a list. When you get to the store, you review your list to remember
what you need. Using notes comes in handy for all sorts of needs, such as
tracking the course of a conversation between business partners or remem-
bering the essential points of a lecture. Humans need notes to jog their mem-
ories. Comments in source code are just another form of note. You add them
to the code so that you can remember what task the code performs later. The
following sections describe comments in more detail.

Understanding comments
Computers need some special way to determine that the text you’re writing
is a comment, not code to execute. Python provides two methods of defining
text as a comment and not as code. The first method is the single-line com-
ment. It uses the number sign (#), like this:

This is a comment.
print("Hello from Python!") #This is also a comment.

 A single-line comment can appear on a line by itself or it can appear after
executable code. It appears on only one line. You typically use a single-line
comment for short descriptive text, such as an explanation of a particular bit
of code.

When you need to create a longer comment, you use a multiline comment. A
multiline comment both starts and ends with three double quotes ("""), like
this:

"""
 Application: Comments.py
 Written by: John
 Purpose: Shows how to use comments.
"""

 Everything between the two sets of triple double quotes is considered a com-
ment. You typically use multiline comments for longer explanations of who
created an application, why it was created, and what tasks it performs. Of
course, there aren’t any hard rules on precisely how you use comments. The
main goal is to tell the computer precisely what is and isn’t a comment so that
it doesn’t become confused.

75 Chapter 4: Writing Your First Application

 Even though single-line and multiline comments are both comments, the IDLE
editor makes it easy to tell the difference between the two. When you’re using
the default color scheme, single-line comments show up in red text, while
multiline comments show up in green text. Python doesn’t care about the col-
oration; it’s only there to help you as the developer.

Using comments to leave
yourself reminders
A lot of people don’t really understand comments — they don’t quite know
what to do with notes in code. Keep in mind that you might write a piece
of code today and then not look at it for years. You need notes to jog your
memory so that you remember what task the code performs and why you
wrote it. In fact, here are some common reasons to use comments in your
code:

 ✓ Reminding yourself about what the code does and why you wrote it

 ✓ Telling others how to maintain your code

 ✓ Making your code accessible to other developers

 ✓ Listing ideas for future updates

 ✓ Providing a list of documentation sources you used to write the code

 ✓ Maintaining a list of improvements you’ve made

You can use comments in a lot of other ways, too, but these are the most
common ways. Look at the way comments are used in the examples in the
book, especially as you get to later chapters where the code becomes more
complex. As your code becomes more complex, you need to add more com-
ments and make the comments pertinent to what you need to remember
about it.

Using comments to keep
code from executing
Developers also sometimes use the commenting feature to keep lines of code
from executing (referred to as commenting out). You might need to do this in
order to determine whether a line of code is causing your application to fail.
In fact, it’s such a common and useful way to work with code that a technique
for adding this sort of comment is built right in to IDLE. Here’s an example of

76 Part I: Getting Started with Python

how this feature works. Say that you have an application like the one shown
in Figure 4-20 (found in the Comments.py file provided as part of the down-
loadable source code).

Figure 4-20:

Sometimes

developers

need to

comment

out lines of

code.

You might want to comment out the line that reads print("This code
is commented out."). To make this happen, place the insertion point
at the beginning of the line, or simply select the entire line, and choose
Format➪Comment Out Region. IDLE then adds a single-line comment to the
code, as shown in Figure 4-21. Notice that this single-line comment uses two
number signs (##) to differentiate it from a single-line comment you create
by hand.

Figure 4-21:

Comment

out any

code you

don’t want

Python to

execute.

77 Chapter 4: Writing Your First Application

Of course, you don’t know yet whether the commenting has worked. Save the
file to disk and then choose Run➪Run Module. You see a new Python Shell
window open with just a single line of output, as shown in Figure 4-22. So, the
first print() command, which isn’t commented out, executes just fine, but
the second one doesn’t.

Figure 4-22:

Commented

out lines of

code don’t

execute.

To add the code back into the application, place the insertion point at the begin-
ning of the line, or highlight the entire line, and choose Format➪Uncomment
Region. IDLE removes the comment that it added earlier. Save the file and then
choose Run➪Run Module to see the result. This time, you see both print()
commands execute, as shown in Figure 4-23.

Figure 4-23:

Both

print()

commands

execute

when nei-

ther is com-

mented out.

 You can comment out multiple lines of code at once by highlighting all of the
lines and choosing Format➪Comment Out Region. Likewise, you can uncom-
ment out multiple lines of code by highlighting all the lines and choosing
Format➪Uncomment Region. It isn’t necessary to comment out or uncomment
out one line at a time unless you have just one line of code to check.

78 Part I: Getting Started with Python

Loading and Running Existing
Applications

Running your application immediately after you write it is fun and interest-
ing, but at some point you’ll close IDLE and be left with a file on your disk.
The file contains your application, but you need to know how to use that
file to execute it. Python actually provides a considerable number of ways
to achieve this task. The following sections describe just three of these
approaches.

Using the command line
or terminal window
The command line, or terminal window, provides the means to execute com-
mands by typing them in. You can also create batch files to execute a number
of commands as part of a batch process. In this case, you’re looking at the
native command environment provided by the platform you’re using, rather
than at the specialized Python command line. When working in this environ-
ment, you type commands to start Python and perform specific tasks. For
example, if you want to execute FirstApp (described in the “Creating the
Application” section of this chapter), you type python FirstApp.py and press
Enter. Figure 4-24 shows typical results. You can execute any other applica-
tion this way as well.

Figure 4-24:

It’s possible

to execute

an applica-

tion directly

at the com-

mand line.

79 Chapter 4: Writing Your First Application

Using the Edit window
Any time you’re in IDLE, you can open an existing application in an Edit
window and execute it, just as you have in previous sections of this chapter.
To perform this task, load the file you saved earlier by choosing File➪Open.
You see an Open dialog box that looks similar to the Save As dialog box
shown in Figure 4-14. Choose the folder containing the application in the
Look In field and highlight it in the list provided. Click Open to open the file.
At this point, you can choose Run➪Run Module to run the application, just as
you would normally.

Using the Python Shell window
or Python command line
When you’re in the IDLE Python Shell window or at the Python command
line, you’re in an environment where you can type commands and see them
executed immediately. However, you need to know the right commands to
perform specific tasks. In this case, the command is a little more complex
than the print() command you’ve been using to date. If you want to exe-
cute FirstApp, you need a really odd-looking command like one of the two
shown here:

exec(open("C:\\BP4D\\Chapter04\\FirstApp.py").read())
exec(open("C:/BP4D/Chapter04/FirstApp.py").read())

 The preceding two commands are really the same one using a different type of
slash. The command works equally well with forward slashes or backslashes.
What this command says to do is this:

 1. Open the FirstApp.py file located in the \BP4D\Chapter04 folder on the
C drive (open() command).

 2. Read the content of this file into the Python environment (read()
command).

 3. Execute the instructions found in the file after it’s loaded (exec()
command).

It’s a little early for a command like this one, but you’ll discover that you can
create combined commands of all sorts later in the book. For now, just try
the command to see that it works. Figure 4-25 shows typical results.

80 Part I: Getting Started with Python

Figure 4-25:

Use forward

slashes or

backslashes

to define

the loca-

tion of your

application.

Closing IDLE
Eventually, you need to close IDLE when your session is finished. The com-
mands for closing IDLE appear on the File menu, and there are actually two of
them (which seems a bit confusing):

 ✓ Close: Closes just the window that currently has focus. This means that
if you’re in a Python Shell window after running an application, just the
Python Shell window closes and not the associated Edit window.

 ✓ Exit: Closes the current window and all associated windows. This means
that if you’re in a Python Shell window after running an application, both
the Python Shell window and the associated Edit window close.

When you close a window, IDLE checks to ensure that you have saved any
content to disk. If you haven’t saved the content, you see a dialog box asking
whether you want to save it.

The File➪Close and File➪Exit commands affect only the current session. For
example, if you open two separate Python files, you need to close each file
separately because each file is opened in a separate session.

